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SYSTEMS AND METHODS FOR
CLASSIFYING DATA IN BUILDING
AUTOMATION SYSTEMS

BACKGROUND

The present disclosure generally relates to the field of
building automation systems. The present invention more
particularly relates to systems and methods for classifying
data points within a multi-point network based on processing
the non-standard and semantically rich descriptions of the
points.

Advanced building management system applications
sometimes rely on the classification and identification of
points. Conventional building management system commis-
sioning processes rely heavily on manual point classification
methods. In other words, a user manually evaluates an exist-
ing point and manually classifies the point under the schema
or protocol for the new application.

Building automation systems are, in general, hardware
and/or software systems configured to control, monitor, and
manage devices in or around a building or building area. BAS
subsystems or devices can include heating, ventilation, and
air conditioning (HVAC) subsystems or devices, security sub-
systems or devices, lighting subsystems or devices, fire alert-
ing subsystems or devices, elevator subsystems or devices, or
other devices that are capable of automating or managing
building functions, or any combination thereof.

Building automation communication standards such as
BAChnet and oBIX provide mechanisms to uniquely identify a
data item or point within a domain of interest (e.g., within a
system or a controller). The standards also allow description
of the function of a data point. However, the standards are
designed for human operators, not for machine processing.
The human operators often decide upon a naming convention
that roughly describes the location, type, or other attributes of
the point. For example, a human operator might decide to
name a power meter located at building C1, Floor 3, East as
“BLDG-C1/ZONE/F-3/EAST/UTILS/EMETER/PWR-3,”
where forward slash is used as a delimiter. Despite good
intentions, point names are often non-standard and difficult to
parse. If the goal is assigning a discovered point to a rich
functional description that an application can understand and
process, the commissioning process can be very lengthy for
buildings having many points. For example, given 50,000
discovered points and a conservatively quick one minute per
point to review, classify, and commission, over eight hundred
hours of manual investigation may be necessary to configure
building points such that they will be useful to an application
that relies on accurate functional classification and mapping.
Because not all points are necessary for an application, points
that are relevant to an application must be selected. This is
also accomplished through manual investigation of naming
conventions, when such conventions exist. Relevant points
must be mapped into the specific equipment. For example,
HVAC equipment generally comprises a set of points. Tem-
perature sensors, cooling/heating set points, humidity, dis-
charge air temperature, and other points, for example, may be
associated with a single variable air volume (VAV) box. Con-
ventionally, spatial relationships among points, equipments
and building spaces must be manually identified and mapped.

Current building automation system naming standards lack
the expressive power to (1) assign a computable semantic
type description to a specific point, and (2) create a relation-
ship among building related objects (e.g., temperature sensor,
fan speed, electricity consumption, zZone, equipment, etc.).
Even though BACnet provides an object identifier, an object
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name, and an object type as mandatory attributes (e.g., char-
acter strings) to describe a point, there is no extension to
describe the function of the point as an object type and to
define relationships among multiple BACnet objects. Human
interpretation of attributes is required to identify the function
of the point for further programming or application binding.
Often additional programming and nonstandard metadata
management are used to support new building automation
system applications.

The challenges already discussed are increased by the real-
ity that enterprise class building automation systems are often
the collection of heterogeneous building automation sub-
systems and devices. Furthermore, over time different build-
ing engineers may add-to or otherwise modify the system. For
example, to describe outdoor air temperature, one operator
may use “OAT,” while another uses “Outdoor Temperature.”
It is also possible for multiple languages (e.g., English and
Spanish) to variously be used in naming and describing a
single system configuration. The uniqueness of each lan-
guage makes word extraction or word segmentation
extremely challenging. For example, Chinese and Japanese
do not have white space to delimit characters at word bound-
aries. Many European languages, e.g., German, permit free
form word jointing to make compound words. There are
many abbreviations to shorten the description of points, and
there are many variations for each abbreviation. For example,
to describe zone temperature, “ZT,” “ZN-T,” “ZNT,” and
others may be used. An organization may use custom coding
technology to encode data points. Such systems may be
lookup based, such that a point is assigned a unique identifier,
e.g., 01VOO1AIO1.

For at least the reasons noted above, it is challenging and
difficult to develop systems and methods for classifying data
in building automation systems.

SUMMARY

One embodiment ofthe invention relates to a computerized
method of assigning a building automation system point type
to a plurality of unclassified data points of a building auto-
mation system. The method includes receiving, at a process-
ing circuit, the plurality ofunclassified data points and at least
one attribute for each data point. The method includes receiv-
ing classifications for a first subset of the unclassified data
points. Each classification associates a data point with a
building automation system point type. The remaining
unclassified data points form a second subset. The method
includes generating a term set containing substrings that
appear in the attributes of the first subset of data points. The
method includes generating a first matrix describing a fre-
quency that each of the substrings appears in the at least one
attribute of the data points of the first subset. The method
includes, for each of a plurality of potential building automa-
tion system point types and for each of a plurality of different
substrings, calculating an indicator of a probability that the
presence of the selected substring in the at least one attribute
of a data point results in the data point belonging to the
selected building automation system point type. The method
includes assigning a building automation system point type to
each data point of the second subset by finding the substring
and potential building automation system point type pair
having the greatest indication of probability.

Another embodiment of the invention relates to a system
for assigning a building automation system point type to a
plurality of unclassified data points of a building automation
system. The system includes a processing circuit configured
to receive the plurality of unclassified data points and at least
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one attribute for each data point. The processing circuit is
further configured to receive classifications for a first subset
of the unclassified data points. Each classification associates
a data point with a building automation system point type.
The remaining unclassified data points form a second subset.
The processing circuit is further configured to generate a term
set containing substrings that appear in the attributes of the
first subset of data points. The processing circuit is further
configured to generate a first matrix describing a frequency
that each of the substrings appears in the at least one attribute
of the data points of the first subset. The processing circuit is
further configured, for each of a plurality of potential building
automation system point types and for each of a plurality of
different substrings, to calculate an indicator of a probability
that the presence of the selected substring in the at least one
attribute of a data point results in the data point belonging to
the selected building automation system point type. The pro-
cessing circuit is further configured to assign a building auto-
mation system point type to each data point of the second
subset by finding the substring and potential building auto-
mation system point type pair having the greatest indication
of probability.

Alternative exemplary embodiments relate to other fea-
tures and combinations of features as may be generally
recited in the claims.

BRIEF DESCRIPTION OF THE FIGURES

The disclosure will become more fully understood from
the following detailed description, taken in conjunction with
the accompanying figures, wherein like reference numerals
refer to like elements, in which:

FIG. 1 is a block diagram of a system for classitying data
points in a building management system, according to an
exemplary embodiment;

FIG. 2A is a detailed block diagram of the learner of FIG.
1 for a naive Bayes classifier, according to an exemplary
embodiment;

FIG. 2B is a detailed block diagram of the learner of FIG.
1 for latent semantic indexing, according to an exemplary
embodiment;

FIG. 3 is a detailed block diagram of the classifier of FIG.
1, according to an exemplary embodiment;

FIG. 4 is a flow diagram of a process for probabilistically
assigning building management system point types, accord-
ing to an exemplary embodiment;

FIG. 5 is a more detailed flow diagram of a process for
probabilistically assigning building management system
point types, according to an exemplary embodiment;

FIG. 6 is a flow diagram of a process for generating a
frequency matrix, according to an exemplary embodiment;

FIG. 7 is a flow diagram of a process for determining
whether retraining is required, according to an exemplary
embodiment.

DESCRIPTION

Before turning to the figures, which illustrate the exem-
plary embodiments in detail, it should be understood that the
disclosure is not limited to the details or methodology set
forth in the description or illustrated in the figures. It should
also be understood that the terminology is for the purpose of
description only and should not be regarded as limiting.

Referring generally to the Figures, a computer system for
automatically classifying data points in a building automation
system (BMS) is shown and described. The computer system
may be utilized in conjunction with a plurality of building
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automation or management systems, subsystems, or as a part
high level building automation system. For example, the com-
puter system may be a part of a Johnson Controls METASY'S
building automation system.

The computer system includes a processing circuit config-
ured to probabilistically classify points through frequency
weighting of relevant terms used in point descriptions. The
processing circuit is also configured to provide a graphical
user interface for allowing a building operator to view, sort,
and/or edit point descriptions and BMS point types.

Embodiments of the present disclosure are configured to
automatically (e.g., via a computerized process) calculate the
frequency that relevant terms appear in point descriptions
belonging to the same BMS point type. The frequencies may
be weighted, e.g., to account for the appearance of common
descriptors (e.g., “Metasys”) across all or substantially all
data points. A matrix describing the frequencies can be gen-
erated. The matrix may be generated using a subset (e.g.,
training data) of the full dataset to be classified. From the
frequency matrix, a representation of the probability that the
presence of a substring in a point description attribute indi-
cates that the point belongs to a given point type may be
generated. A naive Bayes classifier, latent semantic indexing,
or other classification methods, can be used to assign point
types to data points in the entire dataset.

One or more embodiments described herein advanta-
geously assign BMS point types to data points with names or
descriptions that include a large number of abbreviations,
non-dictionary words, and incomplete sentences. One or
more embodiments also advantageously assign point types
without general word-breaking rules and/or lexical analysis
algorithms. One or more of the embodiments also advanta-
geously avoid the need for new or different word-breaking
rules and/or lexical analysis algorithms when additional data
points (e.g., additional BAS installations or subsystems) are
added to the system. One or more of the embodiments also
advantageously assign point types based on terms in the point
descriptions without a complete keyword dictionary or a
parser that must be updated each time new data points are
added to the system.

Referring now to FIG. 1, a block diagram of system 100 for
classifying data points in a building automation system is
shown, according to an exemplary embodiment. System 100
includes a processing circuit 140. Processing circuit 140 may
be configured to carry out process 400 (FIG. 4), process 500
(FIG. 5), process 600 (FIG. 6), process 700 (FIG. 7), or other
processes described herein.

System 100 also includes BAS installations 170. BAS
installations 170 are, in general, hardware and/or software
systems configured to control, monitor, and manage devices
in or around a building or building area. Subsystems or
devices of BAS installations 170 can include heating, venti-
lation, and air conditioning (HVAC) subsystems or devices,
security subsystems or devices, lighting subsystems or
devices, fire alerting subsystems or devices, elevator sub-
systems or devices, other devices that are capable of manag-
ing building functions, or any combination thereof. Many
data points may be associated with each subsystem and
device of BAS installations 170. For example, a return air
temperature data point may be associated with a HVAC sub-
system’s return air temperature sensor. Data points are named
or otherwise described with attributes or metadata in BAS
installations 170. A point description may include, e.g., an
object identifier, object name, description, device type, units,
or other attributes. BAS installations 170 may have many of a
particular point type. For example, in a building with more
than one floor, many temperatures sensors may exist per floor.
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Processing circuit 140 is configured to include communi-
cations electronics 128. Communications electronics 128
may be a network interface, and processing circuit 140 may
be configured to communicate with BAS installations 170 via
a network connection provided by communications electron-
ics 128. For example, point descriptions from BAS installa-
tions 170 may be received at processing circuit 140 via com-
munications electronics 128. Communications electronics
128 may be used to communicate with monitoring and report-
ing applications 130 and/or with client device 101. For
example, point descriptions and BMS point types may be
provided to and edited point descriptions and BMS points
types may be received from monitoring and reporting appli-
cations 130 and/or client device 101 via communications
electronics 128. Communications electronics 128 can be or
include wired or wireless interfaces (e.g., jacks, antennas,
transmitters, receivers, transceivers, wire terminals, etc.) for
conducting data communications with another system or net-
work. For example, communications electronics 128 can
include an Ethernet card and port for sending and receiving
data via an Ethernet-based communications network. In
another example, communications electronics 128 includes a
WiFi transceiver for communicating via a wireless commu-
nications network. Communications electronics 128 may be
configured to communicate via local area networks or wide
area networks (e.g., the Internet, a building WAN, etc.).

According to an exemplary embodiment, processing cir-
cuit 140 is integrated within a single computer (e.g., one
server, one housing, etc.). In various other exemplary
embodiments, processing circuit 140 can be distributed
across multiple servers or computers (e.g., that can exist in
distributed locations). In another exemplary embodiment,
processing circuit 140 may integrated with a smart building
manager that manages multiple building systems. In other
embodiments, processing circuit 140 may exist relatively
independently of other building automation system. Process-
ing circuit 140 may be configured to receive and operate on
data received from one or more building automation system
installations 170. The installations 170 themselves may be
remote from one another and remote from processing circuit
140.

Processing circuit 140 includes processor 150 and memory
160. Processor 150 can be implemented as a general purpose
processor, an application specific integrated circuit (ASIC),
one or more field programmable gate arrays (FPGAs), a
group of processing components, or other suitable electronic
processing components. Memory 160 is one or more devices
(e.g., RAM, ROM, Flash memory, hard disk storage, etc.) for
storing data and/or computer code for completing and/or
facilitating the various processes and modules described in
the present disclosure. Memory 160 may be or include vola-
tile memory or non-volatile memory. Memory 160 may
include database components, object code components,
script components, or any other type of information structure
for supporting the various activities and information struc-
tures described in the present disclosure. According to an
exemplary embodiment, memory 160 is communicably con-
nected to processor 150 via processing circuit 140 and
includes computer code for executing (e.g., by processing
circuit 140 and/or processor 150) one or more processes
described herein.

Memory 160 is shown to include one exemplary embodi-
ment of the system architecture for the point commissioning
process described herein. Memory 160 is shown to include
points for classification 120. Points for classification 120
include point objects and/or point descriptors received from
BAS installations 170.
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Point objects are collections of attribute values. In the
discussion herein, “data point,” “point,” and “point object”
are used interchangeably. In a dataset, the ith point p; is a set
of attribute values a; ;. denoted by.pi:{a.(i, s B¢ - Ay
represents the jth attribute of the ith point in a dataset. For
example, a set of attributes for a BACnet analog object may
include object identifier, object name, description, device
type, or other attributes. A BACnet point for a return air
temperature sensor, e.g., may have the following attributes
(shown with example values for illustrative purposes):

Attribute Type Value

Object Identifier Analog Input #1101
Object Name 507_SP2.RET_AIR
Object Type Analog Input

Present Value 68

Description Return Air Temperature
Device Type Thermistor

Status Flags In_ Alarm, Fault

Units DOF

For further processing by processing circuit 100, concat-
enator 121 can create a point descriptor for each point to be
classified. The resulting point descriptor is an n-gram (i.e., a
continuous sequence of the attributes) in the form of a con-
catenated string of the attribute values of the point. The point
descriptor d, of the i th point object p,, with attributes a; ), is
defined as:

di=str(ag ) @sstr(ag )@, - . . *@sstr(ag )

where * denotes a string concatenation operator and str is a
function that converts an attribute a,  to a string. The symbol
@ represents a delimiter inserted for ease of parsing in word
breaking. For example, a point descriptor for the set of
attributes described in the table above is:

“Analog  Input  #1101@507_5P2.RET_AIR@Analog
Input@Return Air Temperature@Thermistor@DOF”

Concatenator 121 may omit and/or modify certain attribute
values during the concatenation process. According to an
exemplary embodiment, attributes values that are solely
numeric are omitted from the point descriptor by the concat-
enator 121. Thus, in the example above, the point descriptor
did not include the attribute value “68,” corresponding to the
present value of the return air temperature. Omitting numeric
values may advantageously reduce the data that classification
and mapping module 108 parses in order to extract relevant
substrings, words, symbols, or terms.

Some attributes have an abbreviation and an index (e.g.,
SP-2 or ZN_T-2). The index may be a numeric quantity.
According to an exemplary embodiment, indices are replaced
by a predefined character when the attribute value is included
in a point descriptor (e.g., SP-2 becomes SP-? and ZN_T-1
becomes ZN_T-?). Moditying attributes with indices may
advantageously enable classification and mapping module
108 to identify relevant patterns of substrings, words, sym-
bols, or terms. For example, ZN_T-1 (which may stand for
zone temperature sensor 1) may appear only once in a dataset
(e.g., for the first zone of a building), but ZN_T-? may appear
many times (e.g., for each zone temperature sensor). Accord-
ing to another exemplary embodiment, edit distance (i.e.,
character position in a substring) may be used in string simi-
larity measurement and exclusion decisions.

A subset of points for classification 120 (i.e., a first subset)
may be designated as training data 122. According to an
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exemplary embodiment, point descriptors of training data
122 are manually assigned BMS point types via a user inter-
face presented on a display screen (e.g., on a display of client
device 101). The resulting training data 122 may be used by
classification and mapping module 108 to generate or help
populate an initial relevant symbol list 102, a skip list 104,
and/or a BAS point type list 106. In various embodiments, all
or some portion of the labeled point descriptors of training
data 122 are used to generate relevant symbol list 102, skip
list 104, and/or BAS point type list 106.

Training data 122 may also be used to train a naive Bayes
classifier used to classify points as BMS point types. In some
embodiments, the same set of training data 122 is used to
generate relevant symbol list 102 and to train the classifier
116. In other embodiments, different and/or overlapping sets
oftraining data are used. In some embodiments, training data
122 is manually chosen by a BAS operator. In other embodi-
ments, training data 122 is automatically (e.g., randomly,
pseudo-randomly, etc.) chosen by classification and mapping
module 108. In other words, classification and mapping mod-
ule 108 may be configured to select arepresentative portion of
points for classification 120 for training. A representative
portion may include equal or nearly equal numbers of point
objects or point descriptors from a given point type and/or
BAS installation. In an exemplary embodiment, classification
and mapping module 108 may select training data 122 as a set
of training samples X={x, ec;|0<i<M, 0<j<K}, where a train-
ing sample (xi,cj) comprises of a feature vector (i.e., point
descriptor or concatenated string of point descriptors) x, and
a manually assigned point type, ¢,. M denotes the number of
training samples in X. K denotes the number of target classes
in the training set.

Memory 160 includes BAS point type list 106. BAS point
typelist 106 is a collection of point types to which a point may
be assigned. For example, a BAS point type list may include:

Point Types

Box Heating Output

Utility Interval Consumption
Zone Temperature Setpoint
Zone Temperature

Supply Flow Setpoint
Supply Flow

Supply Fan Status

Supply Fan Output

Return Air Temperature
Occupancy

Min Outdoor Air Damper Output
Interval Demand

Interval Consumption
Heating Output

Effective Housing Setpoint
Effective Cooling Setpoint
Duct Static Pressure Setpoint
Discharge Air Temperature
Setpoint

Discharge Air Temperature
Damper Position

Cooling Output

Cooling MaxFlow

In some embodiments, BAS point type list 106 is automati-
cally generated using the manually-labeled points of training
data 122. In other embodiments, the point types are standard-
ized types supported by a class of monitoring and reporting
applications 130, by an application on client device 101, or by
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applications of one or more devices. In yet other embodi-
ments, point type list 106 is based on a standard list plus
manual edits. In such an embodiment, for example, a BAS
operator might manually add, remove, or otherwise modify
point types.

BAS ontology 124 is an information system for relating
building automation system concepts and objects in a way to
facilitates advanced processing tasks. BAS ontology 124 may
rely upon the proper classification of points. Implementation
details of indexing, retrieval, and querying of ontology is
discussed in U.S. patent application Ser. No. 12/831,866,
filed Jul. 7, 2010, which is hereby incorporated by reference
in its entirety.

Memory 160 includes classification and mapping module
108. Module 108 may probabilistically determine BMS point
types for data points using frequency-weighted point descrip-
tor terms. Classification and mapping module 110 may be
computer code executable by processor 150. In an exemplary
embodiment, classification and mapping module 110 calcu-
lates the frequency of relevant terms in concatenated point
descriptions (. Classification and mapping module 110 also
generates a indicator of the probability that the appearance of
one or more substrings in a point description means that the
corresponding point belong to a particular BMS point type.
The substrings may be found in attributes associated with the
points of the building management system.

Classification and mapping module 108 is shown to
include word breaker 112. Word breaker 112 may generate a
list of substrings, which are likely to indicate that a particular
point belongs to a particular point type.

Classification and mapping module 108 is further shown to
include learner 114. Learner 114 may generate a matrix of the
frequency with which substrings generated by word breaker
112 appear in points for classification 120.

Classifier 116 assigns BMS point types to points of points
for classification 120 when a point maximizes the probability
that one or more substrings in a point descriptor indicate that
the point belongs to the particular point type. GUI services
110 provides a user interface for a BAS operator to manually
assign point types to points of training data 122, generate
and/or update relevant symbol list 102, generate a frequency
matrix, assign and/or update assigned point types, etc. Mod-
ule 108 may receive inputs from points for classification 120,
training data 122, and BAS ontology 124. Module 108 may
also receive and transmit data to relevant symbol list 102, skip
list 104, learning results 118, and annotated system configu-
ration 126.

Classification and mapping module 108 includes GUI ser-
vices 110. Data and processing results from classification and
mapping module 108, points for classification 120, training
data 122, relevant symbol list 102, skip list 104, BAS point
type list 106, annotated system configuration 126, etc., may
be accessed by or may be pushed to a monitoring application
130 with several graphical user interface (GUI) elements
(e.g., widgets, dashboard controls, windows, etc.). According
to an exemplary embodiment, a user (e.g., a BAS operator)
may use web-based monitoring applications 130 to view and
navigate real time dashboards relating to the classification of
points described herein. The GUI elements may list and/or
summarize points for classification 120 and/or training data
122. A user may utilize GUI services 110 to manually assign
BMS point types to points of training data 122. The GUI
elements may also allow a BAS operator to start, modify, or
end the processes for automatic generation of relevant symbol
list 102, skip list 104, and/or BAS point type list 106. A user
may utilize GUI services 110 to manually add, remove, or
modify terms or point types from lists 102, 104, 106. The GUI



US 9,411,327 B2

9

elements may also allow a user to view the results of the
frequency calculations and probability calculations by
learner 114. A user may utilize GUI services 110 to view
and/or modify the assigned point types and data points from
classifier 116 and/or annotated system configuration 126.

According to an exemplary embodiment, the GUI elements
may also allow a user to map spatial relationships among
points, equipment, and building spaces. For example, a user
may assign location (e.g., building A, first floor, zone 1) to a
zone temperature sensor associated with a zone temperature
point. In some embodiment, the a list of automatically dis-
covered points from BAS installations 170 is shown. In some
embodiments, the automatically generated relevant symbol
list 102, skip list 104, BAS point type list 104 are displayed a
user. According to an exemplary embodiment, GUI elements
may include a drag-and-drop interface. The interface may be
configured to allow a user to drag point descriptors from a list
and drop the point descriptors in an appropriate locations in a
representation of a building (e.g., a two-dimensional or three-
dimensional rendering the building). For example, a point
descriptor for a zone temperature sensor on the east wing of
the third floor of a building may be dragged from a list to a
visual representation of the third floor’s east wing. The inter-
face may also be configured to assign relationship among
devices and point descriptions. For example, a user may be
able to draw a line (e.g., using an input device), on the visual
representation of the building, connecting a temperature set-
point device with corresponding air handling unit.

The user interface or report (or underlying data engine)
may be configured to aggregate and categorize data points by
point type, BAS installation, etc. The GUI elements may
include charts or histograms that allow the user to visually
analyze the data points. Processing circuit 140 may include
one or more GUI servers, services, or engines (e.g., a web
service) to support such applications. Further, in some
embodiments, applications and GUI engines may be included
outside of the processing circuit 140 (e.g., as part of a smart
building manager). Processing circuit 140 may be configured
to maintain detailed historical databases (e.g., relational data-
bases, XML databases, etc.) of relevant data and includes
computer code modules that continuously, frequently, or
infrequently query, aggregate, transform, search, or other-
wise process the data maintained in the detailed databases.
Processing circuit 140 may be configured to provide the
results of any such processing to other databases, tables,
XML files, or other data structures for further querying, cal-
culation, or access by, for example, external monitoring and
reporting applications 130.

Classification and mapping module 108 includes word
breaker 112. According to an exemplary embodiment, word
breaker 112 receives point data from BAS installations and
parses them into substrings, words, symbols, terms, etc.,
based on a statistical model of n-grams. Point data may be
received at word breaker 112 from BAS installations 170 via
communications electronics 128. Point data may also be
received from points for classification 120. word breaker 112
may operate on the data stored in points for classification 120
ortraining data 122. According to an exemplary embodiment,
word breaker 112 operates on the points descriptors of train-
ing data 122, which have manually-assigned types. Accord-
ing to another exemplary embodiment, word breaker 112
operates during a “learning” or “training” phase of the clas-
sification process described herein.

Word breaker 112 may operate on point data stored in
training data 122 to generate one or more collections of BAS
terms or symbols. These include relevant symbol list 102 and
skip list 104. Relevant symbol list 102 includes substrings,
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words, symbols, terms, etc., that correlate a data point and a
point type. That is, the presence of one or more of the sub-
strings on the relevant symbol list 102 in a point descriptor
(e.g., attributes) may indicate a statistical likelihood that the
point descriptor belongs to a certain point type. In the discus-
sion herein, “substring,” “word,” “term,” and “symbol” are
used interchangeably, and include words, abbreviations, and
alpha-numeric descriptors. The substrings may be in different
languages. According to an exemplary embodiment, relevant
symbol list 102 includes only substrings from training data
122. Relevant symbol list 102 may include multiple words,
symbols, terms, abbreviations, etc. (in multiple languages),
corresponding to the same data type. This advantageously
eliminates the needs for a grammar-, dictionary-, or language-
based parser. For example, for descriptions associated with an
outside air temperature sensor, the relevant symbol list may
include (to the extent these terms are used in training data
122): OAT, OT, OutsideTemp, OutsideTemperature,
Aupentemperaturfithler, ATE, plipomipet o 4, ORI (L,
etc. Relevant symbol list 102 may include a sufficient base-
line of terms to accurately (or some approximation thereof)
classify points. Word breaker 112 may include a query rewrit-
ing scheme and/or word suggestions to correct for misspelled
or incomplete point descriptions.

Skip list 104 includes substrings, words, symbols, terms,
etc., that will not be taken into account during frequency
analysis (in some embodiments, carried about by learner
114). A symbol may be added to skip list 104 when it occurs
in many training samples across point types. A high fre-
quency may indicate that the substring is always or almost
always included in BAS point descriptors and will not be
useful in distinguishing between point types. For example,
“BAS” may be a substring that is included in all point descrip-
tors for a given BAS installation. Because “BAS” is not likely
to indicate what point type (e.g., Supply Flow Setpoint, Sup-
ply Flow, etc.) a data point belong to, “BAS” may be added to
skip list 104.

According to an exemplary embodiment, word breaker 112
is configured to generate relevant symbol list 102, skip list
104, etc., automatically. In other embodiments, a user may
manually add, remove, and/or modify terms in the lists. Rel-
evant symbol list 102, skip list 104, etc. may include multi-
lingual terms. Lists 102, 104 may also include terms found
from multiple BAS installations. Lists 102, 104 may also
store charts, databases, arrays, data objects, etc. that describe
the terms. For example, a relational database may be used to
store attributes for one or more terms, including whether they
are relevant terms or terms to be skipped. Lists 102, 104 may
include past and/or current lists.

Memory 160 includes learner 114. Learner 114 is an imple-
mentation of the probability calculation methods discussed
herein. Two exemplary embodiments of learner 114 are
described in greater detail in the discussions of FIGS. 2A, 2B.
Learner 114 receives substrings from relevant symbol list 102
and point descriptions from training data 122. In one embodi-
ment (described in FIG. 2A), learner 114 calculates the fre-
quency that substrings in relevant symbol list 102 appear in
attributes of training data 122. Learner 114 also generates a
matrix with columns of attributes of the same point type
(concatenated into one string), rows of each substring of the
relevant symbol list 102, and individual elements of the fre-
quency that each of the relevant substrings appear in the
concatenated descriptions. Using the frequency matrix,
learner 114 also generates a description of a probability, for
each substring in the relevant symbol list 102, that the pres-
ence of a substring in a description of the data point indicates
that the data point belongs to a particular point type. In
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another embodiment (described in FIG. 2B), learner 114 gen-
erates a frequency matrix, similar to the one described above.
Using singular value decomposition (SVD), learner 114 also
decomposes the frequency matrix into three different matri-
ces. According to an exemplary embodiment, SVD filters the
non-relevant substrings within a point type. Learner 114 also
reconstructs an approximated frequency matrix as the prod-
uct of portions of the three decomposed matrices. Learner 114
also generates a representation of the probability (e.g., a
cosine distance), between a vector associated with a relevant
substring and a vector associated with point descriptors of a
point type. In some embodiments of learner 114, weighted
frequencies are used to generate the frequency matrix. A BAS
operator may utilize GUI services 110 to initiate, modify, end,
and/or view the processes associated with learner 114. Fre-
quency matrices and probabilities calculations may be trans-
mitted and stored in learning results 118.

Memory 160 includes classifier 116. According to an
exemplary embodiment, classifier 116 is an implementation
of the naive Bayes categorization discussed herein. In other
embodiments, classifier 116 may be used with latent semantic
indexing. Classifier 116 receives points descriptions (e.g.,
attributes) from points for classification 120 and representa-
tions of probability computations from learner 114. Classifier
116 maximizes a probability that the presence of a substring
from the relevant symbol list 102 in the attributes of a data
point indicates that the data point belongs to a particular point
type. Classifier 116 probabilistically assigns a point type from
BAS point type list 106 to the point descriptors of points for
classification 120 based on the maximized probability. A
BAS operator may utilize GUI services 110 to initiate catego-
rization, view the assigned point descriptions, etc. GUI ser-
vices 110 may be configured to allow a BAS operator to
manually reassign a point descriptor to a different point type.
The assigned point types may be transmitted and stored in
annotated system configuration 126.

In some embodiments, classifier 116 may be additionally
configured to determine whether further training must be
completed on points for classification 120 (e.g., after addi-
tional points from BAS installations 170 have been added to
points for classification 120). Classifier 116 may do so by
calculating a dissimilarity between a relevant symbol list 102
generated using a previous dataset from points for classifica-
tion 120 and a relevant symbol list 102 generated using a
current dataset from points from classification 120. When
further training is required, classifier 116 may transmit a
command to word breaker 112 to generate a new relevant
symbol list 102 using a different set of training data 122 from
points for classification 120, and learner 114 to generate a
new frequency matrix and probability description using the
new relevant symbol list 102.

Memory 160 includes annotated system configuration 126.
According to an exemplary embodiment, annotated system
configuration includes the results of classification and map-
ping module 108. That is, annotated system configuration
includes the points of BAS installations 170 and their
assigned point types. Annotated system configuration may
receive point descriptions from points for classification 120
and assigned point types from classifier 116. When retraining
is required, annotated system configuration 126 may transmit
previous configurations (e.g., points and assigned point
types) to learning results 118. The computational results of
classifier 116 from retraining may then be stored in annotated
system configuration 126.

Memory 160 includes learning results 118. According to an
exemplary embodiment, learning results 118 includes the
computational results from word breaker 112, learner 114,
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classifier 116, etc. An item w,, such as point descriptors, in
learning results 118 may be represented as:

031:< 4 lx<P(‘9 l)a<P(‘9 I‘Cl)ap(‘g dea) ooy
P8 Je))

where &, represents the Ith symbol in a dictionary, p(4 ;) is
the probability of 4, in the training data 122, and p(9 ;Icx) is
a probability that a symbol 4 ; appears in a point type c,. In
some embodiments, learning results includes frequency
matrix generated by learner 114. Learning results may also
include probability descriptions generated by learner 114.
According to an exemplary embodiment, learning results 118
may further include results from past iterations of the com-
putations carried out by processing circuit 140.

Referring now to FIGS. 2A, 2B, detailed block diagrams of
learner 114 of FIG. 1 are shown, according to exemplary
embodiments. The embodiment of learner 114 of FIG. 2A
may be used in classifying points using a naive Bayes model.
The embodiment of learner 114 of FIG. 2B may be used in
classifying points using latent semantic indexing. One, the
other, or both of the embodiments of learner 114 shown in
FIGS. 2A, 2B may be implemented as part of classification
and mapping module 108 on processing circuit 140. In both
embodiments, learner 114 may receive inputs from BAS
point type list 106, training data 122, and relevant symbol list
102. Learner 114 may be configured to calculate the number
oftimes or frequency that terms in relevant symbol list appear
in point descriptions of training data 122. Learner 114 may
also generate a matrix describing the frequencies. Learner
114 may also generate a representation of the probability that
the presence of a substring from relevant symbol list 102 in a
point description indicates that the point description belongs
to a particular point type. The probability computations may
be output to classifier 116.

Referring now to FIG. 2A, a detailed block diagram of
learner 114 of FIG. 1 for a naive Bayes classifier is shown,
according to an exemplary embodiment. Learner 114
includes semantic categorizer 202. Semantic categorizer 202
receives point types from BAS point type list 102 and point
descriptors from training data 122. According to an exem-
plary embodiment, the point descriptors of training data 122
are manually labeled with point types. Semantic categorizer
202 organizes the point descriptors into groups or categories
corresponding to the point type. For example, one or more
point descriptors that belong to the zone temperature sensor
point class are grouped together. The grouped point descrip-
tors are transmitted to string concatenator 204.

Learner 114 includes string concatenator 204. String con-
catenator 204 receives point descriptors grouped according to
point type from semantic categorizer 202. According to an
exemplary embodiment, string concatenator 204 concat-
enates point descriptors of the same type into one string.
Thus, for example, if there are one hundred point descriptors
in each of twenty-five point types, string concatenator 204
outputs twenty-five strings. Each string corresponds to one
point type and contains the concatenated point descriptors
that point type. The concatenated strings are transmitted to
term frequency calculator 206 and matrix generator 210. In
other embodiments, the strings of a given BMS point type are
neither grouped together by semantic categorizer 202 nor
concatenated by string concatenator 204. Rather, the point
types from BAS point type list 106 and point descriptors from
training data 122 are transmitted directly to term frequency
calculator 206.

Learner 114 includes term frequency calculator 206.
According to an exemplary embodiment, term frequency cal-
culator 206 receives concatenated strings from string concat-
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enator 204 and terms from relevant symbol list 122. Term
frequency calculator 204 calculates, for each substring in
relevant symbol list 122 and for each concatenated string, the
frequency that the substring appears in the concatenated
string. The frequency (% ) that substring ¢ ;occurs in BMS

point type c; is:

L
Fi00 =3 fid
x=1

where L is the number of substrings in relevant symbol list
102. According to an exemplary embodiment, each concat-
enated string corresponds to one point type. In some embodi-
ments, the calculated frequencies are transmitted directly to
matrix generator 210. In other embodiments, the calculated
frequencies are transmitted to weighted frequency calculator
208.

Learner 114 includes weighted frequency calculator 208.
Weighted frequency calculator 208 receives calculated fre-
quencies from term frequency calculator 206. According to
an exemplary embodiment, direct usage of a raw frequency in
estimating probability may falsely emphasizes certain fea-
tures. This may be true, for example, if a symbol occurs in
many point types (i.e., this symbol has a high frequency). As
a result, the symbol will tend to incorrectly emphasize the
points that contain the symbol. For example, a point descrip-
tion may include the customer name and a building floor
level. Both the customer name and building floor level may
have a high number of occurrences and may not be good
features to classify the descriptor. The relevance of a irrel-
evant symbol in classification can be reduced. To do so, a
frequency weighting scheme may be applied before convert-
ing raw frequencies into probabilities. According to an exem-
plary embodiment, inverted document frequency is to panel-
ize The
informativeness idf( ¢ ;) of' a symbol 4 ; is

irrelevant terms. inverse measure of the

idf(on) = 104%],

where N is the total number of symbols observed from the
training set and df($,) is the number of point descriptors
containing a symbol ¢,. Applying invented document fre-
quency to the term frequency calculation (as described in the
discussed of term frequency calculator 206), the weighted
frequency of a symbol 4, is

e Fsoidfi S ).

According to an exemplary embodiment, the weighted fre-
quency is calculated for each symbol in relevant symbol list
102 across the concatenated strings for each point type. The
weighted frequencies are transmitted to matrix generator 210.

Learner 114 includes matrix generator 210. According to
an exemplary embodiment, matrix generator 210 receives
concatenated strings from string concatenator 204 and
weighted frequencies from weighted frequency calculator
208. Matrix generator 210 constructs an M by K matrix A:
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Jany - Sy

A=

foxy - S

where M is the number of training samples in the set of
training samples X (i.e., the number of concatenated strings
of point descriptors) and K is the number of target classes in
a training set (i.e., the number of symbols in relevant symbol
list 102). Each element represents the weighted frequency
f(x,, of a symbol in a concatenated string of point descriptors.
Each row represents occurrences of a symbol across strings of
point descriptors. Each column represents the frequency of
symbols in a string of point descriptors. According to an
exemplary embodiment, the initial values of A are filled with
1.0, to prevent divide by zero error. In some embodiments,
matrix generator 210 receives un-weighted frequencies from
term frequency calculator 206. In other embodiments, matrix
generator 210 receives point descriptors along with manually
assigned point types (but not concatenated strings) from
training data 122. In such an embodiment, a matrix may be
constructed by matrix generator 210, with each element cor-
responding to the frequency of a symbol, a point descriptor,
and a point type. Matrix generator 210 transmits the con-
structed matrix A to probability calculator 212. In some
embodiments, matrix generator 210 transmits matrix A to
learning results 118.

According to an exemplary embodiment, and as described
below, latent semantic indexing may be generate a matrix A.
Matrix A may be deconstructed using singular value decom-
position, as described below. A portion of the deconstructed
matrices may be used to reconstruct a matrix A', which is an
approximation of matrix A. Matrix A' may be used in place of
matrix A in the discussion herein.

Learner 114 includes probability calculator 212. Probabil-
ity calculator 212 receives frequency matrix A or matrix A'
from matrix generator 210. Probability calculator 212 uses
frequency matrix A or matrix A' to calculate the probability
p(% ) of the frequency of a symbol 9, in a training sample
(i.e., a concatenated string):

where f, ' is the weighted frequency of a symbol in a train-
ing sample (i.e., a concatenated string), L. is the number of
symbols in relevant symbol list 102, and M is the number of
training samples in the set of training samples X (i.e., the
number of concatenated strings of point descriptors).

According to an exemplary embodiment, probability cal-
culator 212 generates a description of the probability that the
presence of one of the terms in relevant symbol list 102 in a
representation of a data point indicates that the data point
belongs to a particular point type. That is, probability calcu-
lator 212 also uses frequency matrix A or matrix A' to calcu-
late the probability p(% ,lcg) that a symbol 9 ; appears in a
class c;:
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FICH)

J

pOrLlcy) =

where {7(:4 ;) is the frequency of a symbol 4 ;in point type c,
(as described in the discussion of term frequency calculator
206 and weighted as described in the discussion of the
weighted frequency calculator 208).

o
Jj
f(x,y)

L
ﬂj:
=1

1=

x:

and is the total occurrence of all symbols in the training
sample (i.e., concatenated string) labeled c;. The probability
p(I jlcg) that symbol &, appears in class c; is transmitted to
classifier 116. In some embodiments, probability calculator
212 transmits probability p(§ ;lcx) to learning results 118.

Referring now to FIG. 2B, a detailed block diagram of
learner 114 of FIG. 1 for latent semantic indexing (L.SI) is
shown, according to an exemplary embodiment. LSI is a
semantic sensitive document clustering technique that cap-
tures and preserves recurring term usage patterns. LSI maps
documents and queries into a lower dimensional space. LSI
involves the creation of a term to document matrix A. The
matrix A is an u by v matrix, where u is the number of
documents (e.g., concatenated strings corresponding to point
types), and v is the number of terms (e.g., from relevant
symbol list 102) observed from a document collection (set of
concatenated strings). The matrix A described in this para-
graph may be similar to the matrix A described in the discus-
sion of matrix generator 210 (FIG. 2A). Semantic categorizer
202, string concatenator 204, term frequency calculator 206,
weighted frequency calculator 208, and matrix generator 210
of FIG. 2B are substantially as described in the discussion of
FIG. 2A.

In the embodiment of FIG. 2B, learner 114 additionally
includes singular value decomposition (SVD) 214. SVD 214
receives a term to document matrix A from matrix generator
210. SVD 214 includes term eigenvector generator 216,
diagonal matrix generator 218, and point description eigen-
vector generator 220. By using SVD, matrix A can be decom-
posed into the product of three different matrices: the term
eigenvector U; the diagonal matrix of singular values S; and
the point description eigenvector V2. Generators 216, 218,
220 construct matrices U, S, and V7, respectively. U is a
matrix of eigenvectors derived from a term-to-term similarity
matrix defined in the document space by measuring correla-
tion. (The term-to-term similarity matrix serves similar role
of the covariance matrix in principal component analysis.) V7
is a matrix of eigenvectors derived from a document-to-docu-
ment (i.e., concatenated string-to-concatenated string) simi-
larity matrix defined in the term space by comparing a term
profile ofa document. S is anr by r diagonal matrix of singular
values, where r is the rank of A. Matrices U, S, and V' may be
referred to as the second, third, and fourth matrices respec-
tively. SVD 214 transmits the matrices U, S, and V7 to matrix
reconstructor 222. In other embodiments, more, fewer, or
different matrices are transmitted to matrix reconstructor 222.

In the embodiment of FIG. 2B, learner 114 includes matrix
reconstructor 222. Matrix reconstructor 222 receives matri-
ces U, S, and V7 from SVD 214. Matrix reconstructor 222 is
configured to construct a matrix A' that approximates term to
document matrix A. Matrix A' may be referred to as the fifth
matrix. Matrix A can be approximated by keeping first k

10

15

20

25

30

35

40

45

50

55

60

65

16

singular values from S, and the corresponding columns from
U and V7. k is the approximation quality control constant. k
should be large enough to allow for fitting of the characteris-
tics of the data and small enough to eliminate the non-relevant
representational details. According to an exemplary embodi-
ment, k is set to 70%. In other embodiments, k may be greater
than or less than 70%. Approximation of the original term-
to-document matrix A can be obtained by

A'=U SV, Tad,

where U, and V,7 represent matrixes that keep the first k
columns from U and V7, and S, is a matrix that has the first k
singular values. Matrix reconstructor 222 transmits matrix A'
to similarity calculator 224. In some embodiments, matrix A'
may be transmitted to learning results 118.

With a careful selection of k (e.g., determined by evaluat-
ing precision and recall), SVD provides a modified vector
space, where non-relevant terms within a BMS point type are
filtered. Transitive co-occurrence of terms is captured by
measuring the correlations among terms, while principal
component analysis (PCA) uses covariance analysis. [LSI
assumes that there are strong associations between terms in
text. According to an exemplary embodiment, such associa-
tions exist in the building management data point classifica-
tion domain. Eventually, the dimension reduction step in LSI
captures the semantic relationships by analysis of term co-
occurrences. The dimension reduction step modifies the com-
ponent matrices in such a way that terms observed in some
documents may appear with greater or lesser estimated fre-
quency and some non-observed terms in the input may appear
(at least fractionally).

According to an exemplary embodiment, matrix A' is used
to calculate the probability p($,) of the frequency of a
symbol 4 ; in a training sample (i.e., a concatenated string).
Matrix A' may also be used to calculate the probability
p(9 Jlcg) that a symbol 9 ; appears in a class c;. Thus, the
methods and systems described herein may advantageously
utilize latent semantic indexing in conjunction with a naive
Bayes classifier.

In the embodiment of F1IG. 2B, learner 114 includes matrix
similarity calculator 224. Similarity calculator 224 may
receive approximated term-to-document matrix A' from
matrix reconstructor 222. Similarity calculator 224 generates
a representation of the probability that the presence of one of
the terms in relevant symbol list 102 in a description of a data
point indicates that the data point belongs to a particular point
type. The probability may be represented by a cosine dis-
tance, which measures the probability based on an angle
between a query and a target vector. The similarity or cosine
distance d(q,t,) between a query vector q (representing a
substring in relevant symbol list 102) and a training sample
vector t, (representing a concatenated string of point descrip-
tors in a given class) is:

q I

0lg- 1) = cosO) = ]

The similarity or cosine distance d(q,t,) may be transmitted to
classifier 116. In some embodiments, matrix similarity cal-
culator 224 may transmit similarity or cosine distance d(q,t;)
to learning results 118.

Referring now to FIG. 3, a detailed block diagram of clas-
sifier 116 of FIG. 1 is shown, according to an exemplary
embodiment. Classifier 116 of FIG. 3 may be configured to
classify points using a naive Bayes model or latent semantic
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indexing. In other embodiments, different methods may be
used. Classifier 116 may be implemented as part of classifi-
cation and mapping module 108 on processing circuit 140.
Classifier 116 may receive input from relevant symbol list
102, BAS point type list 106, points for classification 120, and
training data 122. Classifier 116 may determine a maximum
probability that the presence of a substring from the relevant
symbol list 102 in the description of'a data point indicates that
the data point belongs to a particular point type. Classifier 116
assigns a point type from BAS point type list 106 to the point
descriptors of points for classification 120 based on the
probabilistic determination. Classifier 116 may also be con-
figured to determine whether retraining is required. The
assigned point type may be output to GUI services 110 and
annotated system configuration 126.

Classifier 116 includes dissimilarity calculator 302. Dis-
similarity calculator 302 receives symbols from relevant
symbol list 102 and point descriptors from points for classi-
fication 120. According to an exemplary embodiment, dis-
similarity calculator 302 determines whether retraining is
required. Retraining may include generation of'a new relevant
symbol list 102, frequency matrix, and probability represen-
tation. Retraining is required when the terms used in the point
descriptors of points for classification 120 are sufficiently
(i.e., beyond a threshold amount) different from the terms in
relevant symbol list 102. This indicates that the classification
and mapping module 108 is less than well-suited, with the
then-existing relevant symbol list 120, frequency matrix, and
probability representation, to probabilistically classify points
based on the symbols in the point descriptors. In some
embodiments, dissimilarity calculator 302 may be provided
as part of classifier 116. In other embodiments, dissimilarity
calculator 302 may be provided as part of learner 114 or as a
separate component of classification and mapping module
108.

The need for retraining may arise, e.g., with a new set of
points that is added to points for classification 120. For
example, a new BAS installation (with a new set of data
points) may be added to the system with processing circuit
140. In some embodiments, the need for new training is
determined based on how many symbols have been seen or
not been seen by classifier 116. Given a new set of points,
keyword and symbol extraction is performed by, e.g., word
breaker 112. Keyword and symbol extraction is described in
the discussion of word breaker 112 and results in a new list of
relevant symbols. B is a new set of vocabularies (i.e., key-
words, symbols, terms, etc.) from the new set of points (i.e.,
new query) to be classified and D is the set of terms (e.g.,
relevant symbol list 102) obtained during the training phase.
The dissimilarity between D and B can be measured with the
following form:

1BUDI-1BNDI _ 1BNDI
BUDI  ~ BUDI

(B, D)=

This is the Jaccard index or dissimilarity, which measures the
complementary rate of intersection of two sets. If two sets are
identical (i.e., the terms from both sets of points are identical),
then the equation equals one. If an intersection of two sets is
empty (i.e., the two sets of the points share no terms), then the
equation equals zero. A thresholding parameter (e.g., (B,D)
=0.3) can be used to determine when a classifier needs addi-
tional training. When retraining is required, a notification
may be provided to GUI services 110. Dissimilarity calcula-
tor may also provide commands to, e.g., word breaker 112 to
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generate a new relevant symbol list and learner 114 to gener-
ate a new frequency matrix and/or probability description.
When retraining is not required, dissimilarity calculator 302
may provide a command to point type assignor 304 to proba-
bilistically assign point types to points for classification 120.
In other embodiments, a different method (other than calcu-
lating the Jaccard dissimilarity between relevant terms of two
sets of points) may be used to determine when retraining is
required.

Classifier 116 includes point type assignor 304. Point type
assignor 304 receives point descriptors from points for clas-
sification 120, point types from BAS point type list 106, and
probability descriptions from learner 114. According to an
exemplary embodiment, point type assignor 304 probabilis-
tically assigns point types (from BAS point type list 106) to
point descriptors (from points for classification 120) using
probability representations (from learner 114). A point type
that maximizes the value of the probability representation is
assigned to the particular point. The assigned point types are
transmitted to GUI services 110 and/or annotated system
configuration 126.

In some embodiments, point type assignor 304 is a naive
Bayes classifier. Naive Bayes is an efficient and effective
inductive learning algorithms for machine learning and data
classification. Typically, an example X (e.g., a set of concat-
enated strings) is represented by a tuple of attribute values X=

{X;, X, ...X,), where X, (e.g., one concatenated string) is the
value of ith attribute of example X. C represents the classifi-
cation variable, and c is the value (e.g., a point type label) of
C. Calculation of probability of example X becomes class ¢
is:

p(X | o)plc)

pel 0 ==50

According to an exemplary embodiment, all attributes (e.g.
words in a document) are independent given a class label of
the class variable. Then p(Xlc) is equivalent to

n

PX 0y = plai, 22, o s x L) =] | il o)

i=1

Example X may be classified by finding a class value c, that
maximizes the above equation. That is,

classify(X) = argma: 1_[ plx; | cj)], 0<j<K,
i=1

where K is the number of possible class values (e.g. a number
of point types).

In the embodiment of FIG. 3, the point type assignor may
be a naive Bayes classifier of the form:

classify(X) = argma: 1_[ p(o | cj)], 0<j<K,
J =1

where p(§ ;Icx) is the probability that symbol & ; appears in
class c;, received from the probability calculator 212. Point
type assignor 304 assigns, to a point descriptor, the point type
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that maximizes the equation. Various mathematical methods
may be used to compute the naive Bayes classifier. In other
embodiments, point type assignor 304 is a classifier for latent
semantic indexing. Point type assignor 304 assigns to a point
descriptor the point type that maximizes the similarity or
cosine distance 8(q,t,), as described in the discussion of simi-
larity calculator 116. The similarity or cosine distance may
have a maximum value of one. A point type that maximizes
the cosine distance results in the cosine distance approach (or
reaching) one.

Referring now to FIG. 4, a flow diagram of a process 400
for probabilistically assigning point types is shown, accord-
ing to an exemplary embodiment. Process 400 may be imple-
mented on, e.g., processing circuit 140. In some embodi-
ments, steps 402-406 of process 400 may be characterized as
a “learning” or “training” phase. Steps 402-406 may operate
on a subset of data, whereas step 408 operates on a full set of
data (e.g., all point descriptors from BAS installations 170).
Process 400 may be a high-level representation of the process
described in more detail in FIGS. 5 and 6.

Process 400 includes assigning point types to point
descriptors in training data (402). According to an exemplary
embodiment, the point types are assigned manually (e.g., by
a BAS operator). A BAS operator may use one or more GUIs
provided by GUI services 110 to assign point types. The point
types may include those enumerated in the discussion of BAS
point type list 106 (FIG. 1). The point descriptors in training
data may be a subset of all the point descriptors in the full
dataset (e.g., across all BAS installations). Step 402 may
advantageously reduce the number of points that are required
to be manually assigned compared to the current process,
which involves complete manual classification of points.
According to an exemplary embodiment, the training data
may be selected so that the manually-assigned point descrip-
tors are evenly or nearly evenly distributed across point types,
physical location (e.g., BAS installation), etc.

Process 400 includes determining a weighted frequency
matrix for relevant symbols in the point descriptors in the
training data (404). Relevant symbols may be those identified
by, e.g., processing circuit 140, to most likely indicate what
BMS point type a point belongs to. That is, the presence of the
symbol in the point description increases the probability that
the corresponding point belongs to a particular point type.
Relevant symbols may be determined by word breaker 112
and stored in relevant symbol list 104 (FIG. 1). Processing
circuit 140 may calculate at what frequency the symbols
occur in each of the point descriptors in the training data. In
some embodiments, the points descriptors of the same class
are concatenated into one string. In such embodiments, term
frequency calculator 206 calculates the frequency that the
relevant symbols occur in the strings for each point type. In
some embodiments, the calculated frequency may be
weighted so that it more accurately represents the utility of a
substring in indicating what point type a data point is. For
example, a large proportion of points in a dataset may include
general substrings, such as “BAS.” Because the substring
BAS is unlikely to suggest what point type the point belongs
to, it is less useful than other terms, such a “ZN_T-? (indi-
cating zone temperature). Using the calculated frequency
alone may overemphasize commonly-appearing, but less rel-
evant terms. According to an exemplary embodiment,
inverted document frequency (IDF) is used to weight the
frequencies. Processing circuit 140 may be configured to
generate a matrix of the weighted frequencies. According to
an exemplary embodiment, matrix generator 210 constructs a
matrix with columns of point descriptions of the same point
type (concatenated into one string), rows of each substring of
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the relevant symbol list 102, and individual elements of the
weighted frequency that relevant symbols appear in the con-
catenated descriptions.

According to an exemplary embodiment, latent semantic
indexing may be used in conjunction with a naive Bayes
classifier. A matrix A' may be generated using latent semantic
indexing. Matrix A' may then be used to calculate the prob-
ability p(# ;) of the frequency of a symbol & 9 in a training
sample (i.e., a concatenated string) and the probability
p( Jlcg) that a symbol 4 ; appears in a class c;.

Process 400 includes generating a representation of the
probability of correlation between relevant terms and point
types (406). The representation describes the probability that
the presence of one or more relevant terms in a description of
a data point indicates that the data point belongs to one of a
plurality of point types. In some embodiments, for example,
when a naive Bayes classifier is used, a probability p($ ;lcg)
that symbol &, appears in class ¢, is calculated. This is
described in more detail in the discussion of probability cal-
culator 212 (FIG. 21). In other embodiments, for example,
when latent semantic indexing is used to classify points, a
similarity or cosine distance d(q,t;) between a query vector q
(representing a substring in relevant symbol list 102) and a
training sample vector t, (representing a concatenated string
of point descriptors in a given class) is generated. This is
described in more detail in the discussion of similarity calcu-
lator 224 (FIG. 2B).

Process 400 includes assigning point types to points in the
full dataset (408). The “full dataset” may include all of the
points in points for classification 120 or all of the points of
BAS installations 170. In other embodiments, a BAS operator
may designate a portion of points for classification 120 and/or
BAS installations 170 to be assigned point types. According
to an exemplary embodiment, the full dataset includes more
points than the training dataset. This advantageously obviates
the need for manually assigning point types to all points of
BAS installations 170. Processing circuit 140 assigns point
types by determining a point type-substring pair that maxi-
mizes a probability that the presence of the substring in the
description of the data point indicates that the data point
belongs to the point type. In some embodiments, a naive
Bayes classifier may be used. In other embodiments, for
example, with latent semantic indexing, a similarity or cosine
distance d(q,t,) may be maximized.

Referring now to FIG. 5, a more detailed flow diagram of a
process 500 for probabilistically assigning point types is
shown, according to an exemplary embodiment. Process 500
may be implemented on, e.g., processing circuit 140. In some
embodiments, steps 504-514 of process 500 may be charac-
terized as a “learning” or “training” phase. Steps 504-512
may operate on one or more subsets of data, whereas step 514
operates on a full set of data (e.g., all point descriptors from
BAS installations 170). Process 500 may be a more low-level
description of the process described in FIG. 4.

Process 500 includes receiving a first set of point descrip-
tors (502). The point descriptors may be received at process-
ing circuit 140 from BAS installations 170. The point descrip-
tors may be stored in points for classification 120. In some
embodiments, data points (and not point descriptors) may be
received at processing circuit 140. Processing circuit 140 may
modify (e.g., as described in the discussion of points for
classification 120) and concatenate the attribute values for
each of the points, and store the now-point descriptors in
points for classification 120.

Process 500 includes selecting a first subset of the first set
of'point descriptors for training (504). According to an exem-
plary embodiment, the first subset is a proportion of point
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descriptors selected by a BAS operator. The first subset may
be designated by a BAS operator at a user interface generated
by GUI services 110 (FIG. 1). The first subset may be stored
as training data 122.

Process 500 includes assigning point types to the first sub-
set of point descriptors (506). According to an exemplary
embodiment, the point types are manually assigned to the
subset. The point types may include those enumerated in the
discussion of BAS point type list 106. Manually assigning
point types to only a subset of point descriptors and probabi-
listically assigning classes to the remaining point descriptors
eliminates the need to manually label all of the point descrip-
tors. This may advantageously reduce the time, error, etc.,
associated with completely manual point classification. A
BAS operator may use a user interface generated by GUI
services 110 (FIG. 1) to label the point descriptors. The
labeled point descriptors may be stored as training data 122.

According to an exemplary embodiment, process 500 con-
tinues with “classifier training,” including steps 508-512,
which are described in more detail below. In some embodi-
ments, all of the labeled point descriptors (i.e., the first subset
selected in step 504) are used in classifier training. That is, all
of the point descriptors that are manually labeled are used to
generate a relevant symbol list, frequency matrix, and prob-
ability description. In other embodiments, a fewer than all of
the labeled point descriptors may be used for classifier train-
ing. For example, from the nineteen thousand points (the first
subset) that were manually assigned point types, six thousand
may be selected for classifier training. The subset that is
selected for classifier training may be evenly or near-evenly
distributed across point types, physical locations (e.g., BAS
installations), etc.

Process 500 includes generating a relevant symbol list
using the subset of labeled point descriptors (508). The rel-
evant symbol list may be described as a first plurality ofterms.
The relevant symbol list includes substrings, words, symbols,
terms, abbreviations, etc. (in multiple languages) that are
extracted from the point descriptors. As described in the dis-
cussion of word breaker 112 (FIG. 1), relevant symbol list 102
(FIG. 1), and step 404 of process 400 (FIG. 4), the relevant
symbol list contains substrings that are probabilistically
likely to indicate that a point descriptor containing the sub-
string belongs to a particular point type. According to an
exemplary embodiment, the relevant symbol list is generated
by word breaker 112 and stored as relevant symbol list 102
(FIG. 1). In some embodiments, a skip list may also be gen-
erated (as described in the discussion of word breaker 112 and
skip list 104). The skip list contains substrings that are deter-
mined to be not relevant in determining whether a point
descriptor belongs to a particular BMS point type.

Process 500 includes generating a frequency matrix (510).
As described in the discussions of matrix generator 210 (FIG.
2A) and step 404 of process 400 (FIG. 4), a frequency matrix
includes the frequency that each of the symbols in the relevant
symbol list appears in descriptions of the labeled data points.
In some embodiments, the frequencies may be weighted (e.g.,
using inverted document frequency). In some embodiments,
the point descriptors of a given point type may be concat-
enated into one string. According to an exemplary embodi-
ment, matrix generator 210 (FIG. 2A, 2B) constructs the
frequency matrix. The process for generating the frequency
matrix is described in more detailed in the discussion of FIG.
6. according to an exemplary embodiment, the frequency
matrix may be generated using latent semantic indexing.

Process 500 includes generating a probability representa-
tion (514). As described in the discussions of probability
calculator 212 (FIG. 2A), similarity calculator 224 (FIG. 2B),
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and step 406 of process 400 (FIG. 4), the probability descrip-
tion describes the likelihood that the presence of one or more
symbols in a point descriptor indicates that the point descrip-
tor belongs to a particular point type. The probability descrip-
tion may be of the form p(# lcg), i.e., the probability that
symbol & ; appears in BMS point type c,. This description
may be used when classifying points using a naive Bayes
method. The probability description may also be of the form
d(q.t,) (describing a similarity or cosine distance). This
description may be used when classifying points using latent
semantic indexing. The probability description may be gen-
erated by probability calculator 212 (FIG. 2A) or similarity
calculator 224 (FIG. 2B), and may be based on the frequency
matrix generated in step 510.

Process 500 includes classifying points descriptors in the
first set (514). The first set of point descriptors includes the
first subset, the second subset, and/or additional point
descriptors. The first subset includes the manually labeled
point descriptors. The second subset includes the unlabeled
point descriptors. Process 500 and other methods described
herein thus advantageously classify points of the second sub-
set in an automated manner. According to an exemplary
embodiment, the points are classified probabilistically, based
on the representation generated in step 512. As described in
the discussions of point type assignor 304 (FIG. 3) and step
408 of process 400 (FIG. 4), a point type is assigned to a data
point descriptor when the particular point type maximizes a
probability that substrings in the point descriptor indicate that
the data point belongs to the point type. This may be a sub-
string-point type pair that has the greatest indication of prob-
ability. In some embodiments, a naive Bayes classifier isused.
Processing circuit 140 assigns BMS point types based on
calculating:

classify(X) = argma: 1_[ p(o | Cj)], 0<j<K.
J =1

Various mathematical methods may be used to compute the
naive Bayes classifier. In other embodiments, for example,
when latent semantic indexing is used, processing circuit 140
maximizes a similarity or cosine distance 8(q,t,) between a
query vector q (representing a substring in relevant symbol
list 102) and a training sample vector t, (representing a con-
catenated string of point descriptors in a given class).

Referring now to FIG. 6, a flow diagram of a process 600
for generating a frequency matrix is shown, according to an
exemplary embodiment. Process 600 may be implemented
on, e.g., processing circuit 140. Process 600 describes step
512 of process 500 (FIG. 5) in more detail. In other embodi-
ment, different methods may be used to generate the fre-
quency matrix. For example, latent semantic indexing may be
used.

Process 600 includes concatenating points descriptors of a
given point type (602). According to an exemplary embodi-
ment, the manually-labeled point descriptors are grouped by
point type. This may be done by semantic categorizer 202
(FIG. 2A, 2B). String concatenator 204 concatenates the
point descriptors of a given type into one string. A string of
point descriptors D N for a j th point type c, is

D=di1y@d(o2)* @ - - - @iy
where d(cj_ . 1s the ith point descriptor manually assigned to
point type ¢, ¢ is a string concatenation operator, and @ is a
delimiter. Each point type may be associated with one string
of'point descriptors. Concatenating the strings of a given type
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may advantageously reduce the size of matrix generated
using the strings (as described in step 606). In turn, this may
advantageously decrease the size of memory 160 (FIG. 1),
which may store data representing the matrix. In other
embodiments, point descriptors of a given type may not be
concatenated, and the frequency matrix may be generated (as
described in step 606) with each element corresponding to the
frequency of a symbol, the point descriptor, and the point
type.

Process 600 includes calculating the frequency of relevant
terms across BMS point types (604). As described in the
discussion of term frequency calculator 206 (FIG. 2A) and
step 404 of process 400 (FIG. 4), for each relevant symbol and
for each concatenated string of point descriptors, the fre-
quency that a relevant symbol appears in a concatenated
string is calculated. Frequency calculator 206 (FIG. 2A) may
calculate the frequencies. Because the concatenated strings
represent point types (as described in step 602), calculating
the frequency of the symbols across the concatenated strings
is equivalent to calculating the frequency across point types.
According to an exemplary embodiment, the calculated fre-
quencies are weighted using an inverted document frequency
factor. This is described in the discussion of weighted fre-
quency calculator 208 (FIG. 2A).

Process 600 includes constructing a frequency matrix with
the relevant symbols, concatenated strings, and weighted fre-
quencies (604). The frequency matrix may be described as the
first matrix. As described in the discussion of matrix genera-
tor 210 and step 404 of process 400 (FIG. 4), the frequency
matrix is constructed with columns of concatenated descrip-
tions (i.e., each column corresponds to a different concat-
enated description or a different point type), rows of relevant
substrings (i.e., each row corresponds to a different relevant
substring), and individual elements of the weighted fre-
quency that each of the relevant substrings appears the con-
catenated descriptions. Matrix generator 210 may construct
the frequency matrix.

Referring now to FIG. 7, a flow diagram of a process 700
for determining whether retraining is required, according to
an exemplary embodiment. Process 700 determines whether
the relevant symbol list (from step 510 of process 500), fre-
quency matrix (from step 512 of process 500), and probability
description (from step 514 of process 500) are sufficiently
representative of the points being classified. That is, process
700 determines whether the terms that are used in the points
to be classified are similar enough to the terms used to gen-
erate the relevant symbol list, frequency matrix, and probabil-
ity description, such that the points will be classified accu-
rately. If there is too much divergence between the terms used
in the current points for classification and the terms used to
generate the relevant symbol list, frequency matrix, and prob-
ability description, retraining may be initiated. Process 700
may be implemented on, e.g., processing circuit 140. Accord-
ing to an exemplary embodiment, process 700 may be com-
pleted prior to probabilistically assigning point types. This
may advantageously ensure that point types are assigned by a
classifier that is representative of the terms used in the points
for classification.

Process 700 includes receiving a first set of point descrip-
tors (702) and a second set of point descriptors (706). The first
set and second set may each be pluralities of unclassified data
points. The point descriptors (or data points, in some embodi-
ments) may be received from BAS installations 170. Steps
702, 704 are substantially as described in the discussion of
step 502 of process 500 (FIG. 5). According to an exemplary
embodiment, the second set of point descriptors may be
received at some time after the first set of point descriptors is
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received. During that intervening time, the number and/or
content of the point descriptors from BAS installations 170
may have changed. For example, the second set may include
additional point descriptors that were not present in the first
set. This may be the case when additional BAS installations
are brought on line. In another example, the second set may
include fewer point descriptors than in the first set. However,
the second set may include point descriptors with terms that
did not appear in the first set. This may be the case when
integrating heterogeneous building automation systems (i.e.,
those using different point description vocabularies).

Process 700 includes generating relevant symbol lists for
the first set (704) and the second set (708) of point descriptors.
Steps 704, 708 may be substantially as described in step 510
of process 500 (FIG. 5). Note that steps 702 (receiving the
first set) and 704 (generating a relevant symbol list for the
first) maybe completed as part the ordinary process for clas-
sifying point descriptors of the first set (as described by, e.g.,
process 400 and process 500). The relevant symbol list gen-
erated for the first set may be valid for one or more sets of
points for classification. However, once a number and/or con-
tent of the points of classification have changed beyond a
certain threshold, the relevant symbol list for the first set of
point descriptors may no longer be optimal.

Process 700 includes setting a dissimilarity threshold
(710). According to an exemplary embodiment, a quantity
may be calculated representing the dissimilarity of the rel-
evant symbol list from the first set of point descriptors and the
second set of point descriptors. The dissimilarity threshold
describe the point at which retraining is initiated. Process 700
includes calculating the dissimilarity between the relevant
symbol lists for the first set and second set (712). According
to an exemplary embodiment, the dissimilarity is calculated
using Jaccard dissimilarity. This is described in the discussion
of dissimilarity calculator 302 (FIG. 3). If two lists are iden-
tical (i.e., the same terms are used in both sets), then the
Jaccard dissimilarity equals one. Ifthe intersection of two sets
is empty (i.e., none of the same terms are used in the two sets),
then the Jaccard dissimilarity equals zero. The thresholding
parameter may be set between zero and one (step 710). A
thresholding parameter that is closer to zero allows greater
tolerance for differences between the two relevant symbol
lists, and retraining occurs less frequently. A thresholding
parameter that is closer to one allows less tolerance for dif-
ferences between the two lists, and retraining occurs more
frequently.

Process 700 includes comparing the calculated dissimilar-
ity to the threshold (714). If the calculated dissimilarity is
greater than the threshold, then retraining may be initiated
(716). The need for retraining may be reported to a user
interface generated by GUI services 110. In some embodi-
ments, retraining starts automatically (without a manual
input). In other embodiments, the input of a BAS operator is
required to start retraining. When the calculated dissimilarity
is less than the threshold, the relevant symbol list from the
first set may be continued to be used in the classification of
points (718).

The construction and arrangement of the systems and
methods as shown in the various exemplary embodiments are
illustrative only. Although only a few embodiments have been
described in detail in this disclosure, many modifications are
possible (e.g., variations in sizes, dimensions, structures,
shapes and proportions of the various elements, values of
parameters, mounting arrangements, use of materials, colors,
orientations, etc.). For example, the position of elements may
be reversed or otherwise varied and the nature or number of
discrete elements or positions may be altered or varied.
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Accordingly, all such modifications are intended to be
included within the scope of the present disclosure. The order
or sequence of any process or method steps may be varied or
re-sequenced according to alternative embodiments. Other
substitutions, modifications, changes, and omissions may be
made in the design, operating conditions and arrangement of
the exemplary embodiments without departing from the
scope of the present disclosure.

The present disclosure contemplates methods, systems and
program products on any machine-readable media foraccom-
plishing various operations. The embodiments of the present
disclosure may be implemented using existing computer pro-
cessors, or by a special purpose computer processor for an
appropriate system, incorporated for this or another purpose,
or by a hardwired system. Embodiments within the scope of
the present disclosure include program products comprising
machine-readable media for carrying or having machine-ex-
ecutable instructions or data structures stored thereon. Such
machine-readable media can be any available media that can
be accessed by a general purpose or special purpose computer
or other machine with a processor. By way of example, such
machine-readable media can include RAM, ROM, EPROM,
EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage or other magnetic storage devices, or any other
medium which can be used to carry or store desired program
code in the form of machine-executable instructions or data
structures and which can be accessed by a general purpose or
special purpose computer or other machine with a processor.
Combinations of the above are also included within the scope
of machine-readable media. Machine-executable instructions
include, for example, instructions and data which cause a
general purpose computer, special purpose computer, or spe-
cial purpose processing machines to perform a certain func-
tion or group of functions.

Although the figures may show a specific order of method
steps, the order of the steps may differ from what is depicted.
Also two or more steps may be performed concurrently or
with partial concurrence. Such variation will depend on the
software and hardware systems chosen and on designer
choice. All such variations are within the scope of the disclo-
sure. Likewise, software implementations could be accom-
plished with standard programming techniques with rule
based logic and other logic to accomplish the various connec-
tion steps, processing steps, comparison steps and decision
steps.

What is claimed is:

1. A computerized method of assigning a building automa-
tion system point type to a plurality of unclassified data points
of a building automation system, the method comprising:

receiving, at a processing circuit, the plurality of unclassi-

fied data points from one or more subsystems or devices
of the building automation system, each of the unclas-
sified data points comprising at least one attribute con-
taining a substring;

classifying each data point of a first subset of the unclassi-

fied data points by associating a building automation
system point type of a plurality of building automation
system point types with each data point of the first sub-
set, wherein remaining unclassified data points form a
second subset;

generating a term set containing the substrings that appear

in the attributes of the first subset of data points;
calculating, for each substring in the term set, a frequency
value indicating a frequency that the substring appears in
the attributes of the first subset of data points associated
with one of the building automation system point types;
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repeating the calculating for each of the building automa-
tion system point types such that a frequency value is
calculated for each unique combination of a selected
substring and a selected building automation system
point type;

generating a first matrix, each element of the first matrix

corresponding to one of the unique combinations and
containing the frequency value calculated for the unique
combination;

using the elements of the first matrix to calculate, for each

of the unique combinations, an indicator of a probability
that the presence of the selected substring in the at least
one attribute of a data point results in the data point
belonging to the selected building automation system
point type;

assigning a building automation system point type to each

data point of the second subset by finding the substring
and potential building automation system point type pair
having the greatest indication of probability; and

using the data points of the second subset with the assigned

building automation system point types to control one or
more subsystems or devices of the building automation
system.
2. The method of claim 1, wherein generating the first
matrix comprises:
collecting data points of the first subset classified as the
same building automation system point type;

concatenating the attributes of the data points of the first
subset classified as the same building automation system
point type;

calculating, for each of the substrings, the frequency the

selected substring appears in the concatenated attributes
associated with each building automation system point
type; and

constructing the first matrix with columns of the concat-

enated attributes, rows of the substrings, and individual
elements of the frequency that the selected substring
appears the concatenated attributes associated with the
selected building automation system point type.

3. The method of claim 2, wherein calculating the indicator
of the probability comprises using a naive Bayes classifier.

4. The method of claim 3, wherein generating the first
matrix comprises using latent semantic indexing.

5. The method of claim 2, wherein generating the first
matrix further comprises weighting the frequency that the
selected substring appears in the concatenated attribute asso-
ciated with the selected building automation system point
type using an inverse document frequency factor.

6. The method of claim 2, wherein the indicator of the
probability, for each of the substrings and for each of the
building automation system point types, is equal to the fre-
quency that the selected substring appears in the concatenated
attribute associated with the selected building automation
system point type summed over the substrings and the con-
catenated attributes associated with each building automation
system point type, divided by the number of the occurrences
of any of the substrings in the concatenated attributes associ-
ated with the selected building automation system point type.

7. The method of claim 2, wherein generating the first
matrix further comprises:

deconstructing the first matrix using singular value decom-

position into the product of a second matrix, a third
matrix, and a fourth matrix;

constructing a fifth matrix using portions of the second

matrix, the third matrix, and the fourth matrix, wherein
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the portions are defined by a quality control constant,
and wherein the fifth matrix is an approximation of the
first matrix.

8. The method of claim 7, wherein the indicator of the
probability, for each of the substrings and for each of the
plurality of building automation system point types, is equal
to the cosine distance of a vector describing the selected
substring and a vector describing the selected building auto-
mation system point type.

9. The method of claim 1, further comprising:

receiving a second plurality of unclassified data points and
at least one attribute for each data point;

generating at least one additional term set containing sub-
strings that appear in the attributes of the at least one
additional plurality of unclassified data points;

calculating a dissimilarity indicator using the term set and
the at least one additional term set; and

generating a new term set containing substrings of the first
subset of data points and the second plurality of unclas-
sified data points when the dissimilarity indicator is
greater than a threshold amount.

10. The method of claim 9, wherein the dissimilarity indi-

cator comprises a Jaccard index.

11. A system for assigning a building automation system
point type to a plurality of unclassified data points of a build-
ing automation system, the controller comprising:

a processing circuit configured to receive the plurality of
unclassified data points from one or more subsystems or
devices of the building automation system, each of the
unclassified data points comprising at least one attribute
containing a sub string;

wherein the processing circuit is further configured to clas-
sify each data point of a first subset of the unclassified
data points by associating a building automation system
point type of a plurality of building automation system
point types with each data point of the first subset,
wherein remaining unclassified data points form a sec-
ond subset;

wherein the processing circuit is further configured to gen-
erate a term set containing the substrings that appear in
the attributes of the first subset of data points;

wherein the processing circuit is further configured to cal-
culate, for each substring in the term set, a frequency
value indicating a frequency that the substring appears in
the attributes of the first subset of data points associated
with one of the building automation system point types;

wherein the processing circuit is further configured to
repeat the calculation for each of the building automa-
tion system point types such that a frequency value is
calculated for each unique combination of a selected
substring and a selected building automation system
point type;

wherein the processing circuit is further configured to gen-
erate a first matrix, each element of the first matrix
corresponding to one of the unique combinations and
containing the frequency value calculated for the unique
combination;

wherein the processing circuit is further configured to use
the elements of the first matrix to calculate, for each of
the unique combinations, an indicator of a probability
that the presence of the selected substring in the at least
one attribute of a data point results in the data point
belonging to the selected building automation system
point type;

wherein the processing circuit is further configured to
assign a building automation system point type to each
data point of the second subset by finding the substring
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and potential building automation system point type pair
having the greatest indication of probability; and

wherein the processing circuit is further configured to use
the data points of the second subset with the assigned
building automation system point types to control one or
more subsystems or devices of the building automation
system.
12. The system of claim 11, wherein generating the first
matrix comprises:
collecting data points of the first subset classified as the
same building automation system point type;

concatenating the attributes of the data points of the first
subset classified as the same building automation system
point type;

calculating, for each of the substrings, the frequency the

selected substring appears in the concatenated attributes
associated with each building automation system point
type; and

constructing the first matrix with columns of the concat-

enated attributes, rows of the substrings, and individual
elements of the frequency that the selected substring
appears the concatenated attributes associated with the
selected building automation system point type.

13. The system of claim 12, wherein calculating the indi-
cator of the probability comprises using a naive Bayes clas-
sifier.

14. The system of claim 13, wherein generating the first
matrix comprises using latent semantic indexing.

15. The system of claim 12, wherein generating the first
matrix further comprises weighting the frequency that the
selected substring appears in the concatenated attribute asso-
ciated with the selected building automation system point
type using an inverse document frequency factor.

16. The system of claim 12, wherein the indicator of the
probability, for each of the substrings and for each of the
building automation system point types, is equal to the fre-
quency that the selected substring appears in the concatenated
attribute associated with the selected building automation
system point type summed over the substrings and the con-
catenated attributes associated with each building automation
system point type, divided by the number of the occurrences
of any of the substrings in the concatenated attributes associ-
ated with the selected building automation system point type.

17. The system of claim 12, wherein generating the first
matrix further comprises:

deconstructing the first matrix using singular value decom-

position into the product of a second matrix, a third
matrix, and a fourth matrix;

constructing a fifth matrix using portions of the second

matrix, the third matrix, and the fourth matrix, wherein
the portions are defined by a quality control constant,
and wherein the fifth matrix is an approximation of the
first matrix.

18. The system of claim 17, wherein the indicator of the
probability, for each of the substrings and for each of the
plurality of building automation system point types, is equal
to the cosine distance of a vector describing the selected
substring and a vector describing the selected building auto-
mation system point type.

19. The system of claim 11, wherein the processing circuit
is further configured to:

receive a second plurality of unclassified data points and at

least one attribute for each data point;

generate at least one additional term set containing sub-

strings that appear in the attributes of the at least one
additional plurality of unclassified data points;
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calculate a dissimilarity indicator using the term set and the
at least one additional term set; and

generate a new term set containing substrings of the first
subset of data points and the second plurality of unclas-
sified data points when the dissimilarity indicator is 5
greater than a threshold amount.

20. The system of claim 19, wherein the dissimilarity indi-

cator comprises a Jaccard index.
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